MNIST Digit Recognition

Multi-class classification using evolved neural networks

Watch as NEAT evolves a neural network to recognize handwritten digits (0-9) from the classic MNIST dataset. Each image is 28x28 pixels (784 inputs), with 10 output classes.

Test Set Results

Correct Predictions
0
of 28000 total
Incorrect Predictions
0
misclassified digits
Error Rate
0.0%
lower is better

Neural Network

Network Visualization Disabled

784 input + 10 output neurons makes visualization impractical

Error
0.0
Fitness
0.0
Iteration
0
Network
784-0-10
input - hidden - output

Dataset Information

784
Input Pixels (28x28)
10
Output Classes (0-9)
28K
Training Samples
Kaggle
Data Source

NEAT Settings